In this thesis we consider the dynamics of generic open quantum systems described using quantum master equations (QMEs). Motivated by the puzzling fact that there are two exact QMEs, the time-nonlocal (Nakajima-Zwanzig) and the time-local (time-convolutionless) QME, our focus is finding the general connection between these two canonical approaches. The result takes the form of an elegant functional fixed-point relation between the time-local generator $\mathcal{G}$ and the time-nonlocal memory kernel $\mathcal{K}$, $\mathcal{G}=\hat{\mathcal{K}}[\mathcal{G}]$. This leads to several new insights into important topics in open system dynamics, including the construction of non-perturbative Markov approximations, their relation to initial slip corrections, and a memory expansion used in studies of driven quantum dynamics and transport. Furthermore, it naturally suggests a novel construction of time-local descriptions from iterations of the fixed-point functional, which we explore in detail for the Jaynes-Cummings model describing atomic decay in a radiation field and the resonant level model describing non-interacting transport to an electron reservoir.
We further leverage this relation to derive the general connection between time-local and time-nonlocal perturbation expansions, a long-standing problem. This allows the technically more advanced time-nonlocal approximation strategies to be translated into a corresponding time-local picture, which is advantageous from the quantum information vantage point. We exemplify this using the Anderson model of an interacting quantum dot coupled to voltage-biased electron reservoirs to show how the well-known diagrammatic expansion of the time-nonlocal memory kernel can be translated into its time-local form term-by-term. Additionally, we apply this technique to investigate a powerful renormalized series, which reveals limitations of the time-local approach.
Finally, based on this series we introduce a time-nonlocal renormalization group to address the interesting low-temperature dynamics of Anderson-like models. This method works by lowering the environment temperature and calculating the higher order coupling effects this generates. One of its key features is that a single renormalization group trajectory contains the full temperature dependence of dynamical and transport quantities. The method can be formulated in real-time, which brings several advantages, in particular for analyzing transient dynamics. Our numerical results are benchmarked against several other advanced methods, such as the functional renormalization group, the density-matrix renormalization group, and the quantum Monte Carlo method.